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Application of Max-flow min-cut theorem for
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Hariprasad.P.S (EE11B064), S.R.Manikandasriram (EE11B127)

Abstract—This paper reviews the Max-flow min-cut theorem
based graph cut algorithms particularly the Ford-Fulkerson
algorithm and its applications in Computer Vision and other
fields.

I. INTRODUCTION

Graph cut is a well studied concept in Graph Theory. One
of the major applications of Graph cuts is in the field of
Computer Vision. Many fundamental problems in Computer
Vision can be reformulated as a Graph Cut problem and in
particular, a Max-flow min-cut problem. In this paper, we
will study the Ford-Fulkerson algorithm which is based on
Max-flow min-cut theorem. A mathematical formulation of
the Max-flow min-cut problem as a general graph cut problem
will be presented. The implementation of the Ford-Fulkerson
algorithm will be explained in detail and supported by pseudo-
code. We will take a brief overview of the various applications
of this problem in the field of Computer Vision which will
justify the importance of Ford-Fulkerson Algorithm. Finally,
a brief analysis of the time complexity of the algorithm will
be presented.

According to graph theory, a graph cut is the grouping of
nodes in a connected component into two disjoint subsets and
the weight of the cut is defined to be equal to the sum of the
weights of edges that are present between the disjoint subsets.
If we consider the graph as a flow network, then an s − t
cut is defined as a graph cut which requires the source and
sink nodes to be in different subsets. The weight of an s− t
cut is called as the capacity of the cut. For a given graph
containing a source and a sink node, there are many possible
s − t cuts. Thus a minimum cut is defined as that s − t cut
whose capacity is less than or equal to every other s − t cut
for the given graph.

II. MAX-FLOW MIN-CUT THEOREM

Given a flow network, the Max-flow min-cut theorem states
that the maximum flow between the source and sink nodes
equals the minimum capacity over all s− t cuts. While there
can be many s− t cuts with the same capacity, consequently
there can be multiple ways to assign flows in the network while
achieving the same maximum flow.

Consider a network N = (V,E) with node s as source and
node t as sink. Let c(u, v) denote the real valued capacity of
the edge (u, v) ∈ E and similarly, let f(u, v) denote the real
valued flow between the nodes u and v. The network N must
satisfy the following:

Fig. 1. An example of a flow network showing a min s-t cut. source: Princeton
Lecture notes

f(u, v) ≤ c(u, v)∀u, v ∈ V

f(u, v) = −f(v, u)∀u, v ∈ V

∑
v∈V

f(u, v) = 0∀u ∈ V − {s, t}

The value of the flow through this network for a given s− t
cut is given by:

|f | =
∑
v∈V

f(s, v) =
∑
v∈V

f(v, t)

In order to find the maximal flow, we can apply the Ford-
Fulkerson algorithm to determine the minimum s−t cut which
produces that maximum flow.

III. FORD-FULKERSON ALGORITHM

Ford-Fulkerson algorithm can be briefly described as con-
tinuously sending flow along paths through the flow network
from source to sink until there exists no path which has all
edges with non-zero capacity remaining.

The structure of the algorithm is as follows:
• Find augmenting path P in the residual network Nf .
• Find bottleneck capacity of P .
• Augment flow through P .
• Repeat until no augmenting path exists.
Residual Graph

After one iteration of assigning flow to edges consti-
tuting a valid path P from s to t, the residual graph
Nf is formed by re-computing the edge weights
to denote the remaining capacities which must be
strictly greater than zero. All residual edges with
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Fig. 2. A flow network implementing Flow Fulkerson algorithm to compute
the min s-t cut

weight equal to zero are removed in the residual
graph.

Augmenting Path
Given a residual graph Nf , an augmenting path P
is a valid path from s to t which can contribute
towards increasing the overall flow from s to t.

Pseudo Code
Inputs: Given a Network G = (V,E) with flow capacity c, a
source node s, and a sink node t
Output: Compute a flow f from s to t of maximum value

We define the residual network Gf (V,Ef ) to be the
network with capacity cf (u, v) = c(u, v) − f(u, v) and no
flow

1. f(u, v) ← 0 for all edges (u, v)
2. While there is a path p from s to t in Gf , such that

cf (u, v) > 0 for all edges (u, v) ∈ p:
1. Find cf (p) = min{cf (u, v) : (u, v) ∈ p}
2. For each edge (u, v) ∈ p

1. f(u, v)← f(u, v) + cf (p)
2. f(v, u)← f(v, u)− cf (p)

Complexity Analysis
When the capacities are integers, the runtime of Ford-

Fulkerson is bounded by O(Ef) , where E is the number of
edges in the graph and f is the maximum flow in the graph.
However if the graph has irrational values, the flow might not
converge towards the maximum value and the algorithm runs
forever

IV. REAL WORLD APPLICATIONS

There are numerous real world applications of maximum
flow and minimum cut. A common question about any network
is ”what is the maximum flow rate between some node in that
network and any other node?”. For example, traffic engineers
may want to know the maximum flow rate of vehicles from the
downtown car park to the freeway because this will influence
their decisions on whether to widen the roadways. Another
example might be the maximum number of simultaneous
telephone calls between two cities via the various land-lines,

satellites, and microwave towers operated by a telephone com-
pany. Airline scheduling and Baseball elimination are other
examples which use this algorithm.

The Ford-Fulkerson algorithm particularly has a lot of
applications in Image Processing and Computer Vision. Some
of them are image segmentation, optical flow estimation, stereo
correspondence, etc. where the given problem is transformed
into a maximum flow minimum cut problem and then solved
using the Ford-Fulkerson algorithm.

In the image segmentation problem, there are n pixels,
where each pixel i can be assigned a foreground value fi or
a background value bi. There is a penalty of pij if pixels i, j
are adjacent and have different assignments. The problem is to
assign pixels to background or foreground such that the sum
of their values minus the penalties is maximum.

Let P be the set of pixels assigned to foreground and Q be
the set of points assigned to background, then the problem can
be formulated as,

max(g) =
∑
i∈P

fi +
∑
i∈Q

bi −
∑

i∈P,j∈Q∪j∈P,i∈Q

pij (1)

This maximization problem can be formulated as a mini-
mization problem instead, that is,

min(g′) =
∑
i∈P

fi +
∑
i∈Q

bi +
∑

i∈P,j∈Q∪j∈P,i∈Q

pij (2)

The above equations can be formulated as a maximum flow
minimum cut problem by constructing a network where the
source is connected to all the pixels with capacity fi, and
the sink is connected by all the pixels with capacity bi. Two
edges (i, j) and (j, i) with pij capacity are added between
two adjacent pixels. The s − t cut-set then represents the
pixels assigned to the foreground in P and pixels assigned
to background in Q.
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